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1 Singular Integrals

Definition 1.1. Let K : Rdzt0u Ñ C satisfy, for some constant B,

1.
|Kpxq| ď B|x|´d,

2.
ż

t|x|ą2|y|u

|Kpxq ´Kpx´ yq|dx ď B, for all y ‰ 0,

3.
ż

ră|x|ăs

Kpxqdx “ 0, for all 0 ă r ă s ă 8.

Then, K is called a Calderón-Zygmund Kernel.

With such a kernel K one can associate a translation invariant operator:

Tfpxq :“ lim
εÑ0

ż

|x´y|ąε

Kpx´ yqfpyqdy,

for f P SpRdq. An operator of this type is called a singular integral operator.
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2 Main Theorem

Theorem 2.1. For every 1 ă p ă 8 one can extend any singular integral
operator T to an operator bounded from Lp Ñ Lp.

The steps of the proof are as follows:

• Show that T is bounded from L2 Ñ L2 using the properties of the kernel
and Plancherel’s theorem.

• Show that T is bounded from L1 Ñ L1,8 via a Calderón-Zygmund de-
composition.

• Interpolate between these to bounds to conclude that T is bounded from
Lp Ñ Lp for 1 ă p ď 2.

• Apply the previous results to the adjoint operator T˚ (with K˚pxq “
¯Kp´xq) to conclude that T is bounded from Lp Ñ Lp for 1 ă p ă 8. (i.e.

xTf, gy “ xf, T˚gy use duality).
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3 Calderón-Zygmund Decomposition

3.1 Dyadic Intervals

Definition 3.1. A dyadic interval in R is an interval of the form

r2km, 2kpm` 1qq for k, l P Z.

If two dyadic intervals intersect, then they are equal OR one is contained
inside the other. Dyadic boxes in Rd are products of the intervals given in the
above definition.
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Figure 3.1.1: dyadic intervals at various scales
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3.2 Summary of Decomposition

Fix f P L1pRdq and λ ą 0. We will write f as a sum of a “good” function and
a “bad” function. The good function will be bounded by λ. The bad function
can be large, but it will be supported in a set of controlled measure and it will
have mean zero on its support.

• Select dyadic intervals Ji such that

1

|Ji|

ż

Ji

|fpxq|dx ą λ

and such that Ji is maximal with respect to inclusion. Denote by Ω the
union of all such Ji.

• Write f “ g ` b where

g “ fχΩc `
ÿ

Ji

ˆ

1

|Ji|

ż

Ji

fpxqdx

˙

χJi

and

b “ f ´ g “
ÿ

Ji

ˆ

f ´
1

|Ji|

ż

Ji

fpxqdx

˙

χJi :“
ÿ

Ji

bJi .

• With this decomposition of f we get the following estimates:

–
||g||8 À λ

–
||g||1 ď ||f ||1

–
||b||1 ď 2||f ||1

–
ż

Ji

bJipxqdx “ 0

–

|Ω| ď
1

λ
||f ||1.
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